organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzimidazolium 2-(2,4-dichlorophenoxy)acetate monohydrate

Hui-Lian Liu,^a Qing-Zhong Wang^a and Fang-Fang Jian^{b*}

^aMicroscale Science Institute, Biology Department, Weifang University, Weifang 261061, People's Republic of China, and ^bMicrosale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 29 October 2009; accepted 2 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.102; data-to-parameter ratio = 17.3.

In the crystal of the title hydrated molecular salt, $C_7H_7N_2^+ \cdot C_8H_5Cl_2O_3 \cdot H_2O$, the components interact by way of N-H···O and O-H···O hydrogen bonds, leading to chains propagating in [100].

Related literature

For background to 2,4-dichlorophenoxyacetic acid, see: Lv (1998).

Å

Experimental

Crystal data	
$C_7H_7N_2^+ \cdot C_8H_5Cl_2O_3^- \cdot H_2O_3$	a = 4.9322 (10)
$M_r = 357.18$	b = 23.808(5) Å
Orthorhombic, Pna2 ₁	c = 13.931 (3) Å

 $V = 1635.9 (6) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker SMART CCD diffractometer Absorption correction: none 13995 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.102$ S = 0.983746 reflections 216 parameters 1 restraint $\mu = 0.42 \text{ mm}^{-1}$ T = 293 K $0.20 \times 0.15 \times 0.11 \text{ mm}$

3746 independent reflections 3083 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.069$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1784 Friedel pairs Flack parameter: 0.04 (5)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O2^{i}$ $N2-H2A\cdots O3$ $O1W-H1WA\cdots O3$ $O1W-H1WB\cdots O1W^{ii}$	0.86 0.86 0.74 (5) 0.81 (4)	1.78 1.81 2.11 (5) 1.95 (4)	2.636 (3) 2.667 (3) 2.822 (4) 2.751 (4)	179 172 160 (5) 173 (4)

Symmetry codes: (i) -x + 1, -y + 1, $z - \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5201).

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.

Lv, F. T. (1998). Chem. Agent. 20, 179.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o3043 [doi:10.1107/81600536809045899]

Benzimidazolium 2-(2,4-dichlorophenoxy)acetate monohydrate

H.-L. Liu, Q.-Z. Wang and F.-F. Jian

Experimental

A mixture of 2,4-Dichlorophenoxyacetic acid 4.42 g (0.02 mol) and benzimidazole 2.4 g (0.02 mol) was stirred with ethanol (50 ml) at 367 K for 3 h. Colourless bars of (I) were obtained by recrystallization from acetone and ethanol (1:1) at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances of 0.93–0.96 and 0.86 Å, and with $U_{iso}=1.2-1.5U_{eq}$.

Figures

Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.

Benzimidazolium 2-(2,4-dichlorophenoxy)acetate monohydrate

Crystal data

$\mathrm{C_7H_7N_2^+} \cdot \mathrm{C_8H_5Cl_2O_3^-} \cdot \mathrm{H_2O}$	$F_{000} = 736$
$M_r = 357.18$	$D_{\rm x} = 1.450 {\rm ~Mg~m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 2216 reflections
a = 4.9322 (10) Å	$\theta = 3.4 - 27.5^{\circ}$
b = 23.808 (5) Å	$\mu = 0.42 \text{ mm}^{-1}$
c = 13.931 (3) Å	T = 293 K
$V = 1635.9 (6) \text{ Å}^3$	Bar, colorless
Z = 4	$0.20\times0.15\times0.11~mm$

Data collection

Bruker SMART CCD diffractometer	3083 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.069$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$

T = 293 K	$\theta_{\min} = 3.4^{\circ}$
ω scans	$h = -6 \rightarrow 6$
Absorption correction: none	$k = -30 \rightarrow 30$
13995 measured reflections	$l = -18 \rightarrow 18$
3746 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0468P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.102$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.98	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
3746 reflections	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
216 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1784 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.04 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.90454 (14)	0.52904 (3)	0.19850 (5)	0.05295 (18)
C12	0.18254 (15)	0.69703 (3)	0.23025 (7)	0.0655 (2)
01	0.9973 (3)	0.57283 (7)	0.00727 (12)	0.0399 (4)
N2	0.5521 (4)	0.57806 (9)	-0.38610 (16)	0.0433 (5)
H2A	0.6477	0.5848	-0.3358	0.052*
O3	0.8577 (4)	0.60800 (8)	-0.23670 (12)	0.0495 (5)
N1	0.3939 (4)	0.53553 (8)	-0.51242 (16)	0.0424 (5)
H1A	0.3716	0.5105	-0.5563	0.051*
02	0.6808 (3)	0.53999 (7)	-0.14827 (13)	0.0419 (4)
C10	0.5471 (5)	0.61429 (10)	0.2019 (2)	0.0429 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H10A	0.5020	0.6018	0.2631	0.051*
C15	0.8470 (4)	0.57845 (8)	-0.16206 (16)	0.0316 (4)
C13	0.6758 (5)	0.65057 (10)	0.01831 (19)	0.0392 (5)
H13A	0.7166	0.6629	-0.0433	0.047*
C1	0.3528 (5)	0.61244 (10)	-0.42408 (17)	0.0378 (5)
C8	0.8059 (4)	0.60339 (9)	0.05484 (16)	0.0345 (5)
C14	1.0646 (5)	0.59077 (11)	-0.08771 (18)	0.0387 (5)
H14A	1.2313	0.5724	-0.1072	0.046*
H14B	1.0983	0.6309	-0.0867	0.046*
C7	0.5692 (5)	0.53288 (10)	-0.4412 (2)	0.0446 (6)
H7A	0.6888	0.5033	-0.4310	0.054*
C11	0.4222 (5)	0.66116 (11)	0.1635 (2)	0.0437 (6)
C12	0.4859 (5)	0.67944 (11)	0.0727 (2)	0.0450 (6)
H12A	0.4016	0.7112	0.0477	0.054*
C6	0.2510 (5)	0.58563 (10)	-0.50448 (18)	0.0360 (5)
C9	0.7402 (5)	0.58614 (10)	0.14810 (17)	0.0366 (5)
C2	0.2556 (6)	0.66476 (10)	-0.3953 (2)	0.0517 (7)
H2B	0.3238	0.6831	-0.3415	0.062*
C4	-0.0475 (6)	0.66061 (14)	-0.5315 (3)	0.0641 (8)
H4A	-0.1831	0.6780	-0.5671	0.077*
C5	0.0468 (6)	0.60888 (13)	-0.5602 (2)	0.0511 (7)
H5A	-0.0224	0.5906	-0.6139	0.061*
C3	0.0547 (7)	0.68769 (13)	-0.4503 (3)	0.0673 (9)
H3A	-0.0161	0.7225	-0.4331	0.081*
O1W	0.8508 (6)	0.72439 (12)	-0.1984 (3)	0.0798 (9)
H1WA	0.831 (9)	0.696 (2)	-0.219 (4)	0.111 (19)*
H1WB	0.995 (8)	0.7405 (17)	-0.194 (3)	0.088 (14)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0616 (4)	0.0589 (4)	0.0383 (3)	0.0105 (3)	-0.0035 (3)	0.0137 (3)
C12	0.0578 (4)	0.0584 (4)	0.0802 (6)	0.0021 (3)	0.0287 (4)	-0.0082 (4)
01	0.0435 (9)	0.0492 (9)	0.0271 (8)	0.0090 (7)	-0.0022 (7)	0.0020 (7)
N2	0.0522 (12)	0.0432 (11)	0.0344 (11)	-0.0106 (10)	-0.0063 (9)	0.0002 (9)
O3	0.0647 (12)	0.0488 (10)	0.0350 (9)	-0.0190 (8)	-0.0114 (8)	0.0130 (7)
N1	0.0489 (11)	0.0373 (10)	0.0410 (12)	-0.0052 (9)	-0.0017 (10)	-0.0081 (9)
O2	0.0464 (10)	0.0415 (9)	0.0378 (9)	-0.0093 (7)	-0.0024 (8)	0.0054 (7)
C10	0.0419 (12)	0.0494 (13)	0.0373 (12)	-0.0089 (10)	0.0023 (12)	-0.0011 (11)
C15	0.0352 (10)	0.0321 (10)	0.0274 (11)	0.0031 (8)	0.0026 (9)	-0.0011 (8)
C13	0.0471 (12)	0.0393 (11)	0.0313 (12)	-0.0005 (10)	-0.0020 (10)	0.0019 (10)
C1	0.0457 (12)	0.0354 (11)	0.0321 (12)	-0.0084 (10)	0.0051 (10)	0.0021 (9)
C8	0.0356 (11)	0.0380 (11)	0.0300 (11)	-0.0005 (9)	-0.0054 (10)	-0.0027 (9)
C14	0.0354 (12)	0.0497 (13)	0.0310 (11)	0.0018 (10)	-0.0023 (10)	0.0029 (10)
C7	0.0502 (14)	0.0363 (12)	0.0474 (15)	-0.0031 (10)	-0.0030 (12)	-0.0002 (11)
C11	0.0376 (12)	0.0434 (13)	0.0501 (15)	-0.0058 (10)	0.0041 (11)	-0.0061 (11)
C12	0.0462 (13)	0.0397 (12)	0.0491 (16)	0.0029 (10)	-0.0018 (12)	0.0007 (11)
C6	0.0377 (12)	0.0382 (11)	0.0322 (12)	-0.0057 (9)	0.0012 (9)	0.0008 (9)

C9	0 0391 (11)	0 0419 (12)	0 0288 (12)	-0.0036(10)	-0.0022(10)	0 0019 (9)	
C2	0.0674 (17)	0.0394(14)	0.0482 (16)	-0.0074(13)	0.0174 (14)	-0.0081(12)	
C4	0.0554 (16)	0.0667 (19)	0.070 (2)	0.0127 (14)	0.0073 (16)	0.0225 (17)	
C5	0.0493 (14)	0.0633 (18)	0.0409 (15)	-0.0074(13)	-0.0075(13)	0.0076 (13)	
C3	0.078 (2)	0.0415 (15)	0.083 (3)	0.0100 (14)	0.023 (2)	0.0027 (16)	
01W	0.0654(16)	0.0463 (13)	0.128 (3)	0.0020(12)	0.0147(17)	0.0027(10)	
0111	0.000 (10)	0.0100 (10)	0.120 (0)	0.0020 (12)	0.0117 (17)	0.0000 (11)	
Geometric param	neters (Å, °)						
Cl1—C9		1.731 (2)	C1—C	6	1.384	4 (3)	
Cl2—C11		1.729 (3)	C1—C	2	1.394	1.394 (3)	
O1—C8		1.364 (3)	C8—C	9	1.40	1 (3)	
O1—C14		1.429 (3)	C14—	H14A	0.970	00	
N2—C7		1.324 (3)	C14—	H14B	0.970	00	
N2—C1		1.384 (3)	С7—Н	7A	0.930	00	
N2—H2A		0.8600	C11—	C12	1.37:	5 (4)	
O3—C15		1.257 (3)	C12—	H12A	0.930	00	
N1—C7		1.318 (3)	C6—C	5	1.38	7 (4)	
N1—C6		1.390 (3)	C2—C	3	1.360	5 (4)	
N1—H1A		0.8600	С2—Н	2B	0.930	00	
O2—C15		1.244 (3)	C4—C	5	1.376 (4)		
C10-C11		1.383 (4)	C4—C	3	1.390	5 (5)	
С10—С9		1.385 (3)	С4—Н	4A	0.9300		
C10—H10A		0.9300	С5—Н	5A	0.9300		
C15—C14		1.520 (3)	С3—Н	3A	0.930	00	
C13—C12		1.387 (3)	O1W-	-H1WA	0.73	(5)	
C13—C8		1.390 (3)	O1W—H1WB		0.81	(4)	
С13—Н13А		0.9300					
C8—O1—C14		116.82 (18)	N1—C	27—N2	110.9	9(2)	
C7—N2—C1		107.7 (2)	N1—C	7—H7A	124.0	6	
C7—N2—H2A		126.2	N2—C	7—H7A	124.0	5	
C1—N2—H2A		126.2	C12—	C11—C10	120.7 (3)		
C7—N1—C6		108.3 (2)	C12—	C11—Cl2	119.7	7 (2)	
C7—N1—H1A		125.9	C10—	C11—Cl2	119.7	7 (2)	
C6—N1—H1A		125.9	C11—	C12—C13	120.0	0 (2)	
С11—С10—С9		119.2 (3)	C11—	C12—H12A	120.0)	
С11—С10—Н10А	4	120.4	C13—	C12—H12A	120.0)	
С9—С10—Н10А		120.4	C1—C	6—C5	122.2	2 (2)	
O2—C15—O3		124.6 (2)	C1—C	6—N1	106.0	0(2)	
O2—C15—C14		120.1 (2)	С5—С	6—N1	131.8	8 (2)	
O3—C15—C14		115.25 (19)	C10—	С9—С8	121	3 (2)	
C12—C13—C8		120.8 (2)	C10—	C9—Cl1	118.8	33 (19)	
С12—С13—Н13А	4	119.6	C8—C	9—Cl1	119.8	39 (18)	
С8—С13—Н13А		119.6	С3—С	C3—C2—C1 116.4 (3)		4 (3)	
N2—C1—C6		107.1 (2)	С3—С	2—Н2В	121.8	8	
N2—C1—C2		131.5 (2)	C1—C	2—Н2В	121.8	8	
C6—C1—C2		121.4 (2)	С5—С	4—C3	121.8	8 (3)	
O1—C8—C13		124.9 (2)	С5—С	4—H4A	119.1	l	
O1—C8—C9		117.0 (2)	C3—C4—H4A		119.1	l	

172

160 (5)

173 (4)

2.667 (3)

2.822 (4)

2.751 (4)

C13—C8—C9	118.0 (2)		C4—C5—C6		116.1 (3)
O1—C14—C15	114.17 (19)		С4—С5—Н5А		122.0
O1—C14—H14A	108.7		С6—С5—Н5А		122.0
C15—C14—H14A	108.7		C2—C3—C4		122.1 (3)
O1-C14-H14B	108.7		С2—С3—НЗА		118.9
C15—C14—H14B	108.7		С4—С3—Н3А		118.9
H14A—C14—H14B	107.6		H1WA—O1W—H1WB		126 (4)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A···O2 ⁱ		0.86	1.78	2.636 (3)	179

1.81

2.11 (5)

1.95 (4)

0.86

0.74 (5)

0.81 (4)

N2—H2A…O3

O1W—H1WA…O3

 $O1W - H1WB \cdots O1W^{ii}$

Symmetry codes: (i) -*x*+1, -*y*+1, *z*-1/2; (ii) *x*+1/2, -*y*+3/2, *z*.

Fig. 1

